# Approach to Syncope in the ED

Vukiet Tran, CCFP(EM), FCFP, MHSc, MBA

Staff, Emergency Physician University Health Network

- ✤ 75 yo female presents with syncope
  - Multiple previous episodes
  - PMH: CAD, CABG, DM
  - Physical exam normal
  - ECG: LBBB
  - She is well in your ED
- What will be management?

- ✤ 35 yo male was at the Maple Leafs game.
- ✤ He suddenly passed out.
- He regained consciousness almost immediately
- No post-syncopal symptoms
- \* No seizure-like activity noted.
- No PMH, FHX, Meds.
- Denies drugs and alcohol
- Wants to know what happened to him



- ✤ Young female of 28 yo.
- ✤ Felt weak in the subway station.
- Then passed out as she tried to get up from her seat
- Now in your RAZ
- What work-up would you like?

# Objectives

By the end of this session, you will be able to...

- 1) Understand the importance of clinical assessment in the evaluation of syncope
- 2) Appreciate the importance of cardiac etiologies
- 3) Focus your approach to the diagnosis of syncope
- 4) Make decisions on management (disposition) based on prognosis

# Definition

- Greek origin "synkoptein" meaning "to cut short", pause
- Sudden transient loss of consciousness with concurrent diminution in postural tone followed by <u>spontaneous recovery, and</u> <u>absence of neurological sequelae</u>.

vs pre-syncope (near-syncope)

#### What is not Syncope!!!

- \* TIA
- Stroke (ischemic or hemorrhagic)
- \* Hypoglycemia

# Syncope and...

| Syncope | Symptom             | Conditions                                             |
|---------|---------------------|--------------------------------------------------------|
| Syncope | Chest pain          | Aortic dissection<br>Ruptured AAA<br>STEMI<br>Acute PE |
| Syncope | Headache            | SAH<br>Intra-parenchymal<br>hemorrhage                 |
| Syncope | Shortness of breath | Pneumothorax<br>PE                                     |
| Syncope | Abdo pain           | Ruptured AAA<br>Ruptured viscous                       |
| Syncope | Bleeding            | UGIB<br>LGIB                                           |
| Syncope | Rash                | Anaphylaxis<br>Sepsis                                  |

# Syncope mimics

- Seizures
- Drop-attacks
- Conversion syndromes
- Psychogenic syncope
- \* Malingering

#### Sudden cardiac death

# Syncope/Presyncope

- Chest pain (exertional)
- Dyspnea (exertional)
- Heart murmur
- ✤ Family history

# My Definition of Syncope

A *given opportunity* to diagnose a potentially fatal disease and prevent *sure death* in a patient who is currently feeling well and *unaware of his fate*.

# Epidemiology

- ✤ 1-6% of hospital admissions
- ✤ Diagnosis in only up to 70-80%
- No cause on initial evaluation 34%
- Most causes are benign
- Mortality low
  - Cardiac origin: 18-33%

Europace (2009) 11, 937-943

# Incidence

- \* 6.2/1000 person-years
- ✤ Bimodal distribution (10-30yo and > 65yo)
- ✤ Rates increase with age (sharp rise at 70 yo)
- Lifetime cumulative incidence (subjects > 65yo): 35-39%
- ✤ 80% have their first episode before age of 30y
- ✤ 10-year incidence:
  - 11% for pt 70-79%
  - 17-19% for pt > 80%

Am J Emerg 2009; 27: 271-279 NEJM 2002; 347: 878-885

#### Incidence



NEJM 2002; 347: 878-885

#### Mortality according to etiology



# In General Practice

- Prevalence is 2-9 per 1000 encounters
- Peak ages
  - 10-30yo (women)
  - Age > 65 (both men and women)
- Only a subgroup presents to a medical doctor
  - 44% did not seek medical advice
  - Event rate is 2<sup>4</sup> tfmes Migher<sup>7</sup> if the general population than the presentation rate

# In General Practice

- ✤ 9.3 visits at the GP per 1000 person-years
- 0.7 visits at the ED per 1000 person years
- \* More frequent in women
- \* Young men tend not to visit their GP
  - Trend disappear with higher age
- Elderly tend to visit their GP in relation to the younger patient (22 vs 2 visits/1000pt-years)

Am J Emerg Med 2009. 27; 271-279

13.3 times more

# Etiologies

| * | Vasovagal                                   |                         | 20% |
|---|---------------------------------------------|-------------------------|-----|
| * | Cardiac                                     |                         | 13% |
| * | <ul> <li>Orthostatic hypotension</li> </ul> |                         | 9%  |
| * | Medications                                 |                         | 7%  |
| * | Stroke                                      |                         | 4%  |
| * | TIA                                         |                         | 4%  |
| * | Other                                       |                         | 10% |
| * | Unknown                                     | NEJM 2002; 347: 878-885 | 31% |

#### My classification

| Non-fatal                                 | Fatal                                 |
|-------------------------------------------|---------------------------------------|
| Vasovagal                                 | Cardiac arrhythmias (and medications) |
| Orthostatic hypotension (and medications) | Hemorrhage                            |
| Psychogenic                               | Sepsis/shock                          |

# Syncope is a symptom, not a disease

- Multiple causes
- Sporadic
- ✤ Causes range from benign to lethal
- ✤ Occur in the young and old

"Low-risk, high stake" Who is at high risk of death?

- Asymptomatic when they arrive to your ED
- 18% of patient have multiple etiologies
- No uniform strategy for evaluation
  - Extensive broad-based evaluations are performed and hospital admissions are frequent
- Failure to diagnose an arrhythmic cause can be fatal
- Difficulty in ascertaining which patient are at risk for an adverse event

Europace 2010: 12; 230-239 Mayo Clin Proc. 2003; 78(4): 414-420

- Difficulty establishing the diagnosis in the ED and concerns about arrhythmias have led to liberal policy towards hospital admission.
- Not known if these policies affects patient outcome
- No controlled trials studying outpatient vs inpatient work-up

Circulation. 2002; 106: 1606-1609

- In-patient evaluation can be
  - Expensive (\$2 billion annually)
  - Unfocused (4.6+/- 2.6 tests required, range 0-16)
  - Unrevealing and non-productive (16% have specific tests performed beyond monitoring)

Europace 2010: 12; 230-239

#### ACEP recommendation

#### TABLE 6. Recommendations of the American College of Emergency Physicians for Hospitalization of Patients With Syncope

Older age and associated comorbidities<sup>a</sup> Abnormal electrocardiographic findings<sup>b</sup> Hematocrit <30 (if obtained) History or presence of heart failure, coronary artery disease, or structural heart disease

A Emerg Med. 2007; 49(4): 431-444nn

# Responsibility of the physician

| Crucial                                                                                                         | Secondary                                                                                             |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| <ul> <li>Define the apparent prognosis</li> <li>Identifying patients with life-threatening processes</li> </ul> | Identifying patients with<br>non life-threatening<br>processes that will benefit<br>from intervention |
| *Determine which patient<br>require further evaluation                                                          |                                                                                                       |
| Which patient can be<br>safely discharged for<br>outpatient work-up                                             |                                                                                                       |

#### Core work-up

History Physical exam ECG

# First step

- History, physical exam, and ECG form the cornerstone of initial evaluation
- ✤ Diagnostic yield of 45-50%

Ann Int Med 1997; 126: 989-996

#### History

- \* Did the patient have syncope?
  - Dizziness/vertigo?
  - Drop attack? (no LOC)
  - Seizure activity
  - Falls
- \* Sequence of events:
  - Context
  - Prodrome (and duration of prodrome)
  - During the event
  - After the event
- Neurologic symptoms

# History

- Plays a key role in the initial evaluation of syncope
  - Prodromal symptoms
  - Family history
  - Triggers and context
  - Medications

Europace (2009) 11, 937-943

# History

- 20 symptoms were assessed
- Outcomes: recurrence of syncope or death
- Symptoms alone do not stratify risk in the unexplained syncope
- ✤ Factors that risk stratify:
  - Age
  - Previous syncopal episodes
  - Psychiatric history
  - Baseline heart disease
  - Abnormal ECG

Ann Intern Med. 1997; 126: 989-996

#### Historical independent predictors of an abnormal EPS

\* Age

- ✤ LVEF < 0.40 (CHF)</p>
- Structural heart disease

Ann Noninvasive Electrocardiol 2009; 14(2): 119-127

#### Final word on History

Repeated findings of bad outcomes

Age over 65 Congestive heart failure Existing heart disease Family history of SCD Abnormal ECG

# High risk features

- History of structural heart disease
- \* Family history of SCD
- Absence of prodrome
- \* Palpitations and chest pain
- Exertional syncope
- No recollection of falling
- Atient "white" vs "blue"

# ECG

- Low diagnostic yield: 5%
- A normal ECG is highly predictive of benignity
  - In the absence of an abnormal ECG, further cardiovascular testing has little yield
- ECG are non-invasive, easy to perform, and inexpensive
- Abnormal ECG in 82% of patients who died in follow-up

Ann Intern Med, June 15 1997; 126 (12): 989-996 Am J Med 2001. 111: 177-84

#### ECC as an indamandant pradiator

Table 5. Independent Predictors of Abnormal EPS, after Logistic Regression

|               | OR    | CI           | P Value |
|---------------|-------|--------------|---------|
| ECG + Holter+ | 35.94 | 10.14–127.36 | <0.001  |
| ECG + Holter- | 17.83 | 4.82–65.87   | <0.001  |
| ECG - Holter+ | 3.45  | 0.92–12.88   | 0.064   |
| ECG - Holter- | 0.07  | 0.02–0.23    | <0.001  |
| Age           | 1.02  | 1.007–1.033  | 0.002   |
| LVEF          | 0.97  | 0.95–0.99    | 0.013   |
| OHD           | 3.13  | 1.52–6.46    | 0.002   |

Ann Noninvasive Electrocardiol 2009; 14(2):119-127
### Things to look for on ECG

- Arrhythmias/blocks
- Ischemias
- ✤ PE
- Short PR/LGL/WPW
- Long QT Syndrome
- Short QT Syndrome
- \* ARVD
- Brugada Syndrome
- \* HCOM
- Pulmonary hypertension

### History and ECG

 ECG in addition to history and physical exam yielded a diagnosis in 76% of cases

Am J Med 2001; 111: 177-184

### **Basic laboratory testing**

### \* RBW

- Diagnostic yield: 2-3%
- usually confirms a clinical suspicion
- not recommended, should be guided by clinical evaluation
- Pregnancy test is recommended in all women of child-bearing age

Ann Intern Med, June 15 1997; 126 (12):989-996

### Not so useful labs

- \* D-Dimer (Euro J Emerg Med 2009. 16: 256-260)
- Myoglobine and CK (Euro J Emerg Med 2009. 16: 84-86)

## Cardiac testing

### ✤ Diagnostic yield 5-35%

- Echocardiography
- Stress testing
- Holter
- Loop recorder
- EPS

Ann Intern Med, June 15 1997; 126 (12): 989-996

## Echocardiography

- ✤ Low yield 5-7%
- Routine Echo did not establish the cause of the syncope
- Normal Echo for ALL patients without a cardiac history and normal ECG
- Important if presence of structural heart disease or abnormal ECG
- No cost-effectiveness studies
  - But cost 7 times more than an ECG Ann Intern Med July 1 1997; 127 (1): 76-86 Heart 2002; 88: 363-367

### Exercise stress testing

- \* Low yield: < 1%
- Indicated in:
  - Ischemic heart disease
  - Exertional syncope\*

Ann Inter Med July 1 1997; 127 (1): 76-86

## 24 Holter

- Yield of 19%
  - 4% correlation of symptoms with arrhythmia
  - 15% have symptoms without arrhythmia
  - 14% have asymptomatic arrhythmia
- Causal relation between most of these arrhythmias and syncope is uncertain
- A negative holter does not r/o arrhythmogenic etiology

### External Loop recorder

| Yield       | 24-47%                                    |  |  |
|-------------|-------------------------------------------|--|--|
|             | (highest in patients with palpitations)   |  |  |
| Indications | 1) Frequent episodes<br>with normal heart |  |  |
|             | 2) Recurrent events                       |  |  |
|             |                                           |  |  |
|             |                                           |  |  |
|             |                                           |  |  |

## Continuous Outpatient Mobile Telemetry (COMT)

- Only prospective study to date
- ✤ 17 centers
- Indications
  - Presyncope
  - Syncope
  - Severe palpitations
- ✤ End-point
  - Confirmation or exclusion of an arrhythmia as the cause

| Number | 266            |
|--------|----------------|
| МСОТ   | 89% diagnostic |
| Loop   | 69% diagnostic |

J Cardiovasc Electrophysiol, vol 18, March 2007; 241-247

### Implantable Loop Recorder

- & Used as an initial strategy (ILR-based strategy)
  - Correlation between syncope and ECG findings in 34% (54% were bradycardia and asystole)
  - In the unexplained syncope, ILR diagnosed an additional 52% (vs 20% by conventional strategy)
  - Overall, yield was 55% vs 19% by conventional strategy

Circulation. 2001. 104(1): 46-51



JACC 2012, 59; 1583-1591

## Electrophysiology Study

| Goals     | VT, VF, SVT                                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------------|
| Risks     | PE<br>Cardiac perforation<br>MI                                                                                      |
| Drawbacks | A negative study does not exclude<br>arrhythmogenic cause<br><i>Insensitive to detect</i><br><i>bradyarrhythmias</i> |
| Overall   | Invasive<br>Expensive                                                                                                |

## Tilt Table Test

### Indications:

- 1) Unremarkable history and physical, normal ECG, no structural heart disease
- 2) Non-diagnostic loop recorder Holter
- 3) Recurrent syncope of unexplained origin
- 4) Differentiate seizure from convulsive syncope





## Tilt Table Test

- Yield 60%
- Sensitivity 63-83%
- Specificity 90% (0-100%)
- More false-positives in the young

# Positive test does not exclude cardiac cause

## Neurological testing

- ✤ Low yield 2-6%
- Useful if patients have neurological symptoms/signs or carotid bruits
  - Seizures
  - Focal neurological signs

## Neurological testing

| EEG                  | Studies showed little use in the<br>unselected patient with syncope<br>Not recommended as routine<br>workup |
|----------------------|-------------------------------------------------------------------------------------------------------------|
| CT and MRI           | Yield of 4%<br>No use if no neuro symptoms                                                                  |
| Carotid doppler      | Usefulness is unknown                                                                                       |
| Transcranial doppler | Usefulness in drop attack is<br>unknown                                                                     |

## **Coloured-glasses**

| Cardiology           | Echo, Holter, EPS, stress test         | 83%   |    |
|----------------------|----------------------------------------|-------|----|
| Internal<br>medicine | Abdo ultrasound, CT/MRI, miscellaneous | 69.5% | re |
| Neurology            | EEG, CT/MRI, Tilt test                 | 54.5% |    |

Europace (2003) 5, 283-291 European Heart J 2002 (23); 815-820

## Risk stratification based on prognostic factors

### **Risk stratification 1**

### TABLE 3. Predictors of Cardiac Arrhythmias in Patients with Unexplained Syncope

|                                       | Univariate Analysis |          | Multivariate Analysis |     |          |         |
|---------------------------------------|---------------------|----------|-----------------------|-----|----------|---------|
| Variables                             | OR                  | 95% CI   | р                     | OR  | 95% CI   | р       |
| Abnormal ECG                          | 11.6                | 4.6-29.5 | < 0.001               | 8.1 | 3.0-22.7 | < 0.001 |
| Age ≥65 years                         | 13.4                | 3.0-58.5 | < 0.001               | 5.4 | 1.1-26.0 | 0.03    |
| History of congestive heart failure   | 8.6                 | 3.5-21.1 | < 0.001               | 5.3 | 1.9-15.0 | 0.002   |
| History of myocardial infarction      | 4.3                 | 1.7-10.9 | 0.003                 |     |          |         |
| History of cardiac disease (any type) | 4.3                 | 1.8-10.1 | 0.001                 |     |          |         |

### Overall arrhythmogenic syncope 17-18%

Acad Emerg Med; Dec 2003; 10, 12: 1312-1317

### San Francisco Syncope Rule

#### Figure.

Decision tree to derive the San Francisco Syncope Rule.



### 7-days outcome study

- Sensitivity 96.2%
- Specificity 62%
- \* NPV 99.2%
- \* PPV 24.8%
- Decrease admission
   rate by 10%

### San Francisco – Validation

### Internal

### 30-days outcome study

- Sensitivity 98%
- Specificity 56%
- Potentially decreasing admission by 7%
- "should use as a risk stratification...as opposed to traditional rules used to replace judgment"

### External

7-days outcome study

- Sensitivity 89%
- Specificity 69%

Ann Emer Med. 2006: 47: 448-454 Ann Emer Med. 2007; 49: 420-427

### San Francisco – Elderly patients

Application of the rule for pts > 65yo 7-days outcome study

- Sensitivity 76.5%
- Specificity 36.8%
- ✤ NPV 87%
- ✤ PPV 22.1%

Am J Emerg Med (2008) 26: 773-778

### San Francisco vs clinical judgment

### **Clinical judgment**

Sensitivity 94% Specificity 54% ROC (AUC) 0.83

### San Francisco

Sensitivity 96% Specificity 62% ROC (AUC) 0.92

Am J Emerg Med (2005) 23, 782-786

### Rule out vasovagal – Calgary Syncope

**C** - - - - -

Table 5 Diagnostic questions to determine whether syncope is due to vasovagal syncope or to another cause of syncope

| Question                                                                                                          | Points<br>(if yes) |
|-------------------------------------------------------------------------------------------------------------------|--------------------|
| Is there a history of at least one of<br>bifascicular block, asystole, supraventricular<br>tachycardia, diabetes? | -5                 |
| At times have bystanders noted you to be blue<br>during your faint?                                               | -4                 |
| Did your syncope start when you were 35 years<br>of age or older?                                                 | -3                 |
| Do you remember anything about<br>being unconscious?                                                              | -2                 |
| Do you have lightheaded spells or faint<br>with prolonged sitting or standing?                                    | 1                  |
| Do you sweat or feel warm before a faint?                                                                         | 2                  |
| Do you have lightheaded spells or faint with<br>pain or in medical settings?                                      | 3                  |

EHJ 2006, 27; 344-350

The patient has vasovagal syncope if the point score is  $\geq -2$ .

### Calgary score

|                | Sheldon et al<br>EHJ 2006          | Romme et al<br>EHJ 2009      | Guzman et al<br>Europace 2013 |
|----------------|------------------------------------|------------------------------|-------------------------------|
| Population     | Syncope with no structural disease | Consecutive<br>transient LOC | Referred for tilt testing     |
| Sample         | 418                                | 380                          | 180                           |
| Characteristic |                                    |                              | Age 73.4+/-7.8                |
|                |                                    |                              |                               |
| Sensitivity    | 89%                                | 87%                          | 51%                           |
| Specificity    | 91%                                | 32%                          | 73%                           |

### Calgary experience

- Mainly used to r/o Vasovagal syncope
- Not as useful for elderly and those with diabetes

## OESIL risk score

| <b>Independent Predictors</b> | <b>Risk ratio</b> |
|-------------------------------|-------------------|
| Age > 65                      | 1.42              |
| CVD on history                | 1.34              |
| Abnormal ECG                  | 1.29              |
| Syncope without prodrome      | 1.13              |

European Heart Journal 2003; 24: 811-819

### **OESIL** risk score

Derivation cohort Z Validation cohort



Fig. 2 Rates of 12-month all-cause mortality according to the OESIL score in the derivation and validation cohorts.



Fig. 4 Kaplan-Meier survival curves according to the score at presentation in patients included in the derivation cohort.

OESIL score > 1 is predictive of mortality

### Prognosis

- Risk of death increased by 30% among all patients with syncope
- Risk doubles with cardiac syncope
- Vasovagal syncope is not associated with increased risk of major outcomes



### Cardiac syncope: mortality rate > 10% at 6 months

### Management should be...

## Based on risk and prognosis

and not on diagnosis (if diagnosis is not possible and often difficult to make)

### Summary of risk stratification

| Sarasin et al.                           | San Francisco                                            | OESIL                                                                                                                                 | Miscellaneous                                                                                                                           |
|------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| *Abnormal ECG<br>*Age > 65<br>*Hx of CHF | *Abnormal ECG<br>*SOB<br>*SBP < 90<br>*Hct < 30%<br>*CHF | <ul> <li>Abnormal ECG</li> <li>Age &gt; 65</li> <li>Cardiovascular<br/>disease on Hx</li> <li>Syncope without<br/>prodrome</li> </ul> | <ul> <li>Exertional<br/>syncope</li> <li>Family history of<br/>premature<br/>sudden death</li> <li>Drugs that<br/>prolong QT</li> </ul> |

### **Cases Revisited**

### Case 1

- ✤ 75 yo female presents with syncope
  - Multiple previous episodes
  - PMH: CAD, CABG, DM
  - Physical exam normal
  - ECG: LBBB

What will be your management?

### Case 1

- Loop recorder placed for 1 month, but was asymptomatic
- ✤ Had EPS, normal
- Loop event monitoring again which showed complete AV dissociation
- A Pacemaker placement
   A
- No syncope after 2-year f/u


- Referred to cardiology and admission to CCU.
- A procainamide challenge test was done during EPS.
- Internal defibrillator inserted.

- ✤ Young female of 28 yo.
- ✤ Felt weak in the subway station.
- Then passed out as she tried to get up from her seat.
- \* What work-up would you like?

- ✤ B-HCG was positive.
- Pelvic ultrasound showed rupture left ectopic pregnancy with free fluid in the pelvis.
- Transferred care to Gynecology

## Summary

- History, physical examination, and ECG form the cornerstone of the syncope work-up
- Patients whom heart disease is known or those with exertional syncope should get cardiac testing

# Summary

- EPS in patients with organic heart disease
- Holter for patients with heart disease
- Loop monitoring in patients with frequent events and normal hearts
- Tilt table in patients with infrequent or neurocardiogenic events

### Take Homes

- Careful (and painful) history give you the diagnosis in almost all cases
- Diagnose benign causes
- \* **IDENTIFY** high risk criteria
- Use clinical decision rules if initial risk is unclear (but know their limitations)
- Do an ECG on all patients
- High risk patients should receive cardiac consultation

### Questions?



#### Vukiet.tran@rogers.com